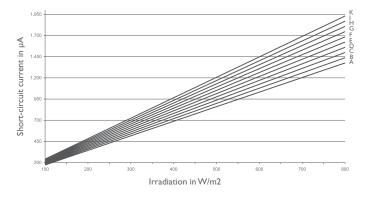


CSI0 Solar cell

The solar cell is used for measuring the irradiation intensity. The shortcircuit current rises with increasing irradiation intensity. The short-circuit current is proportional to the irradiation intensity (see diagram).

TECHNICAL DATA

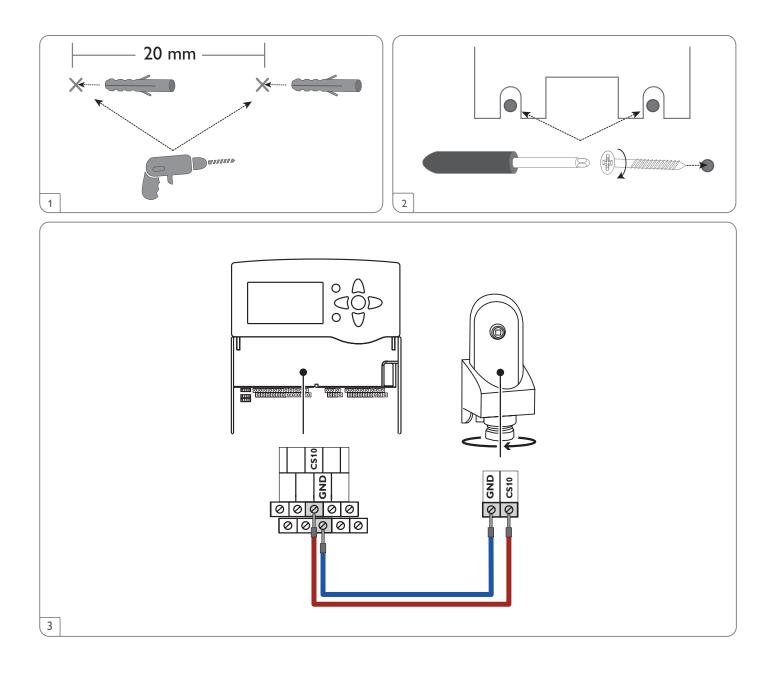

Housing with cable gland: PG 9 Housing material: PA6 (cable gland) and PMMA (housing) Dimensions: 83.5 x 34.5 x 32 mm Ingress protection: IP54 / EN 60529 Temperature: -20 ... +70 °C

Connection cable note:

Cable diameter: 4 - 8 mm

Wire cross section: AWG 22 - 14 (0.34–1.5 mm²) The cable coating must be permitted for outdoor use. The connecting cable can be extended to up to 100 m.

Graphical representation of the short-circuit current depending on the irradiation and the sensor type



Sensor class		Short-circuit current
alpha	num	[µA]
А	1	1.72
В	2	1.80
С	3	1.87
D	4	1.95
Е	5	2.03
F	6	2.10
G	7	2.18
Н	8	2.26
I	9	2.34
К	10	2.41

Referring to the solar irradiation per m² [W/m²]

Example: Sensor type E

At an irradiation of 450 W/m², the short-circuit current is $450\times2.03~\mu A=913.5~\mu A=0.9135~m A$

